
computing center

1

Beijing Brain Center High Performance Cluster User
Manual

October 25, 2022

computing center

2

Beijing Brain Center High Performance Cluster User Manual 1

Chapter two Cluster login .. 4

1.1 VPN login .. 4

1.2 Host login .. 5

1.2.1 Cluster IP Address ... 5

1.2.2 Windows user host login .. 5

1.2.3 Linux , Mac user host login ... 7

1.3 File upload and download ... 7

1.3.1 Windows user file upload and download ... 7

1.3.2 Linux , Mac user file upload and download 8

1.4 Graphics Forwarding .. 9

1.4.1 Window user graphics forwarding... 9

1.4.2 Graphical forwarding for Mac users .. 9

Chapter 3 module environment loading ... 10

Chapter 4 Assignment Submission .. 11

Chapter 5 View storage space .. 22

Chapter 6 User Support .. 22

computing center

3

Chapter 1 Existing Clusters
The platform's massive data processing and storage cluster adopts GPU+CPU heterogeneous system, with a total of 2504 processors, 60 computing

nodes, 2 fat nodes, and 6 GPU nodes. The total double-precision computing capacity of the cluster is about 0.4PFlops. P is a high-performance storage

system with raw capacity, achieving an aggregated read and write bandwidth of up to 40GB/s, to meet applications in the field of brain science such as huge

data volume, high bandwidth, and high IOPS. In order to ensure the efficient and stable operation of the cluster, the computing center also Formulated

resource quota restriction strategy, real-time alarm of computer room environment, hardware and software faults

Node class
queue/partitio

n name
number
of nodes

Processor Specifications Number of cores per node
memory

per
node

Number of
GPUs

Cluster
computin
g power

cpu common
node

q_cn 60
2*Intel(R) Xeon(R) Gold 6140

CPU @ 2.30GHz
36 cores (Apply for one core, about
4.9G memory is available) 192G /

0.4 PFlops

Four-way fat
node

q_fat 2
4*Intel(R) Xeon(R) Gold 6140

CPU @ 2.30GHz
72 cores (Apply for one core, about
20G memory is available)

1536G /

q_fat_c_ 8
4*Intel(R) Xeon(R) Gold 6240

CPU @ 2.60GHz
72 cores (Apply for one core, about
20G memory is available)

1536G /

q_fat_l 3
4*Intel(R) Xeon(R) Gold 6240

CPU @ 2.60GHz
72 cores (Apply for one core, about
20G memory is available)

1536G /

GPU fat node q_ai8 2
2*Intel(R) Xeon(R) Gold 6230

CPU @ 2.10GHz
40 cores (Apply for one core, about
24G memory is available) 1024G

8*NVIDIA Tesla
V100 32GB

GPU node

q_ai 2
2*Intel(R) Xeon(R) Gold 6140

CPU @ 2.30GHz
36 cores (apply for one core, about
4.9G memory is available)

192G

4* NVIDIA Tesla

V100 32GB

q_ai24 1
Intel(R) Xeon(R) Gold 5118

CPU @ 2.30GHz
24cores (apply for one core, about
7G memory is available)

q_ai48 1
2*Intel(R) Xeon(R) Gold 6240R

CPU @ 2.40GHz
48 cores (Apply for one core, about
3.6G memory is available)

Total available storage capacity: 3.1P, aggregate read and write bandwidth: 40GB/s

computing center

4

Chapter two Cluster login

1.1 VPN login

 Open IE browser or safari browser and visit https://210.73.223.2:1443 or

https://bbsi.cibr.ac.cn:1443 , a security warning message will be displayed after opening the

webpage, click "Details" and then click "Go to this page", the VPN login window will be

displayed at the end, enter the VPN account password and click login.

 The Easyconnect client will be downloaded and installed for the first login , and the client

can be used for subsequent logins without logging in from the web page.

Open the Easyconnect client and enter the access address

vpn account of the cluster , password and then enter the verification code received by the

mobile phone

The first time is the mobile phone number set by the administrator. If you want to change the

mobile phone number during use, you can modify it yourself after logging in successfully.

https://bbsi.cibr.ac.cn:1443%20,%20a%20

computing center

5

1.2 Host login

1.2.1 Cluster IP Address

cluster IP address is: 10.12.100.88 , through which users can log in to the login node of

the cluster. The login node is mainly used for operations such as file uploading and

downloading, program writing, software installation and job submission. The login node

cannot run the program (slurm needs to be used to schedule the login node) , otherwise

it will affect the login and operation of other users.

1.2.2 Windows user host login

Windows users can log in to the cluster with SSH client software such as MobaX

term , Xshell , SSH Secure Shell Client, PuTTY, and SecureCRT . The following uses xs

hell as an example to introduce how to log in. xshell is paid commercial software, bu

t there is a free educational home version available for download.

1) Open x shell , click "New Session" in "File"

2) Edit the session, enter the IP address in the red box

computing center

6

3) Enter the cluster host account and password

Click "User Authentication", enter the host account and password, and then click "OK" to

complete the session creation.

4) Select the session you just created and click "Connect" to log in to the cluster

5) When you log in for the first time, a window will pop up asking whether to save the key.

After selecting "Accept Keep", you can log in to the cluster.

computing center

7

1.2.3 Linux , Mac user host login

ssh command directly in the command line terminal to log in directly:

$ ssh username@10.12.100.88

1.3 File upload and download

1.3.1 Windows user file upload and download

Windows users can use MobaXterm , Xftp , SSH Secure Shell Client, winscp and other

software to upload and download files. The following uses Xftp as an example to introduce

how to upload and download files. xshell is commercial paid commercial software, but there

is a free educational home version available for download.

1) new session

Open xftp and click "New" in "File".

2) Edit the call, enter the IP, account and password

3) Select the created session and click "Connect" to log in to the cluster

mailto:username@10.12.100.88

computing center

8

4) File upload and download

After the cluster is successfully logged in , the left side is the machine, and the right side

is the high-performance cluster, which can be directly dragged to upload and download files.

1.3.2 Linux , Mac user file upload and download

Linux and Mac users can directly use commands to upload and download files. All files

need to be uploaded to the DATA directory .

 scp filename username @10.12.100.88:~/DATA

mailto:username@10.12.100.88:~/DATA
mailto:username@10.12.100.88:~/DATA

computing center

9

1.4 Graphics Forwarding

1.4.1 Window user graphics forwarding

Windows users can use MobaXterm , X shell+Xmanager (commercial version),

putty+xming and other software to realize software graphics forwarding. The following takes

Moba Xterm as an example to introduce how to use graphics forwarding.

1) Set the terminal to stay online

2) Log in to the cluster to run the test program and jump out of the graphical interface

1.4.2 Graphical forwarding for Mac users

Mac users need to download the xquartz X11 terminal program separately

1) Modify the configuration file

$ sudo vim / etc / ssh /sshd_config

#X11Forwarding noRemove # and change no to y es

2) restart sshd service

stop > $ sudo launchctl unload -w /System/Library/LaunchDaemons/ssh.plist

Launch > $ sudo launchctl load -w /System/Library/LaunchDaemons/ssh.plist

computing center

10

See if it starts > $ sudo launchctl list | grep ssh

3) Log in to the terminal

$ ssh -Y user@10.12.100.88

4) Run the test

$ srun -p q_cn --x11 -- pty xclock

 Chapter 3 module environment loading

The cluster has installed some common software, which are managed and used by

Module

Use the module command to switch between different versions of the same software, or

switch between different software with the same function, so as to choose the most suitable

programming environment and operating environment.

module avail View all module managed software

Module load bwa /0.7.17

Load the appropriate version of the software

If you write to ~/ .bashrc , the terminal that

you log in will automatically load the

corresponding software

If it is written into the job submission script

of sbatch , it will only take effect in the script,

and the shell environment outside the script

will be invalid.

module list Show currently loaded software

module swap bwa/0.7.17 bwa/0.7.12 Switch software version

module unload bwa /0.7.17 Uninstall the corresponding version of the

software

module spider bwa Full list of search modules

module purge Clear all loaded software

mailto:user@10.12.100.88

computing center

11

Chapter 4 Assignment Submission

s lurm job scheduling system is divided into s run , s batch , salloc 3 ways to

submit assignments

How to submit

assignments

How to use advantage shortcoming Trial scene

srun interactive

commit

srun + resource application +

program running command

srun -J test -p q_cn -c 1 python

hello.py

Quick and easy

Program output is printed

directly to the screen, making

it easy to observe program

running logs and error

messages

The terminal

is

disconnected

from the

cluster and

the job will

be

interrupted

Pre-work

debugging

computing center

12

sbatch batch

submission

The job submission parameters are

written in the script run.slurm ,

which executes sbatch run.slurm

submit job

The calculation is stable, and

the job is controlled by the

computing node, regardless of

the terminal state

batch submission

Need to write

a few lines of

script, slightly

cumbersome

formal

calculation

salloc allocation

commit

salloc + resource application

sallloc -J test -p q_cn -c 1

Continue to occupy the node

without repeated queuing (no

exit will always be billed)

See the output of the program

from the screen in real time

The terminal

is

disconnected

from the

cluster and

the job will

be

interrupted

A large

number of

jobs of the

same size

need to be

submitted

but do not

want to be

queued

repeatedly

Note: The default duration of the task is 7 days. If you want to extend a longer time, you can contact the

administrator to apply

4.1 single-threaded job submission

srun interactively submits commands

Program output is printed directly to the screen, making it easy to observe program

running logs and error messages

Let's start with a simple example:

During the calculation process, we run the hostname command to submit application

resources for 1 task and 1 core, then use srun to submit the command:

srun -J hostname -p q_cn -o job.% j.out -n 1 hostname

sbatch batch submission , the script name is hostname.sh (daily recommended)

#!/ bin/bash

computing center

13

#SBATCH -J hostname

#SBATCH -p q_cn

#SBATCH -o job.% j.out

#SBATCH -n 1

hostname

After editing the script, you can submit it directly to the computing node to run

sbatch hostname.sh

salloc allocation commit

salloc -p q_cn -n 1

srun -n 1 -o job.% j.out hostname #Still need s run to submit, no need to specify

partition, no need to queue

Parameters involved in the example :

-J hostname #hostname is the name of the submitted job, custom

-p q_cn #The specified partition for job submission is the q_cn queue;

-o job.% j.out #The output of the script execution will be saved in the job.% j.out file,

where %j represents the job number;

-n 1 #Run a task (process) on each node

4.2 Multithreaded submission (parallel program programmed with

OpenMP)

The following takes the sbatch submission method as an example
multithread command during the calculation process , start 1 task (process), 36 cores, then

use sbatch to submit the command (the script name is multithread.sh):

#!/ bin/bash

#SBATCH -J multithread

#SBATCH -o job.% j.out

#SBATCH -p q_cn

computing center

14

#SBATCH -n 1

SBATCH -c 36

module load anaconda3/4.8.2 #m odule loads the required software

./multithread

After editing the script, you can submit it directly to the computing node to run

sbatch multithread.sh

Parameters involved in the example :

-J multithread # multithread is the name of the submitted job, custom

-p q_cn #The specified partition for job submission is the q_cn queue;

-o job.% j.out #The output of the script execution will be saved in the job.% j.out file,

where %j represents the job number;

-n 1 #Run a task (process) on each node

-c 36 # use 36 cores per process

4.3 Multi-process submission (parallel programs programmed with

MPI)

The following takes the sbatch submission method as an example
multiprocess command during the calculation , start 100 tasks (processes), then use sbatch to

submit the command (the script is named multiprocess.sh):

#!/ bin/bash

#SBATCH -J multiprocess

#SBATCH -o job.% j.out

#SBATCH -p q_cn

#SBATCH -n 100

module load anaconda3/4.8.2 #m odule load the required software

srun -n 100 ./multiprocess

After editing the script, you can submit it directly to the computing node to run

sbatch multiprocess.sh

Parameters involved in the example :

computing center

15

-J multiprocess # multithread is the name of the submitted job, custom

-p q_cn #The specified partition for job submission is the q_cn queue;

-o job.% j.out #The output of the script execution will be saved in the job.% j.out file,

where %j represents the job number;

-n 1 #Run a task (process) on each node

-c 36 #Use 36 cores per process

4.4 Multi-process + multi-thread (parallel program programmed

with MPI+OpenMP)
The following takes the sbatch submission method as an example

hybrid -pro-thr command during the calculation process , apply for 2 nodes for resources,

each node runs a process, and each process runs 36 cores, then use sbatch to submit the

command (the script name is hybrid-pro-thr.sh) :

#!/ bin/bash

#SBATCH -J hybrid-pro- thr

#SBATCH -o job.% j.out

#SBATCH -p q_cn

SBATCH -N 2

SBATCH --ntasks-per-node=1

#SBATCH -c 36

module load anaconda3/4.8.2 #m odule loads the required software

srun -n 2 ./hybrid-pro-thr

After editing the script, you can submit it directly to the computing node to run

sbatch hybrid-pro-thr.sh

Parameters involved in the example :

-J hybrid-pro- thr # hybrid-pro- thr is the name of the submitted job, custom

-p q_cn #The specified partition for job submission is the q_cn queue;

-o job.% j.out #The output of the script execution will be saved in the job.%

j.out file, where %j represents the job number;

--n tasks - per-node = 1 #Run a task (process) on each node

-c 36 # use 36 cores per process

-N 2 # 2 nodes

computing center

16

Common submission parameters

--help # Display help information;

-D, --chdir =<directory> # Specify the working directory;

--get-user-env # Get the current environment variables;

--gres =<list> #Required parameters when using gpu card, such as applying for 1 gpu -

-gres = gpu:1

-J, --job-name=<jobname> # Specify the job name of the job;

--mail-type=<type> # When the specified state occurs, send email notification, the valid

types are (NONE, BEGIN, END, FAIL, REQUEUE, ALL);

--mail-user=<user> #Send to the specified mailbox ;

-n, -- ntasks =<number> #By default, one task is one core ;

-c, --cpus -per-task=< ncpus > # The number of cores required by each task, the

default is 1;

-- ntasks -per-node=< ntasks > # The number of tasks per node, the priority of the --

ntasks parameter is higher than this parameter, if the -- ntasks parameter is used , it will

become the most running one per node number of tasks;

-o, --output=<filename pattern> # Output file to which the output from the job script

will be output;

-p, --partition=< partition_names > # Submit the job to the corresponding partition;

-t, --time=<time> # The maximum time allowed for the job to run, the current cluster

default time is 7 days

-w, -- nodelist =<node name list> # Specify the node to apply for;

-x, --exclude=<node name list> # Exclude the specified node;

- -mem-per- cpu =<size[units]> #The memory size allocated by each core can use

the suffix [K|M|G|T] to specify different units

4.5 screen
If the user uses s run Interactive mode can use screen to run in the background to avoid

the termination of the task caused by the terminal exit

screen -S screen name S creen

ctrl+ a + d Switch back to the main screen from the current window

(without closing the screen)

ctrl+a+k force close the current window

screen - ls Display the created screen terminal and get the job name

screen -r screen name Enter the specified screen

computing center

17

4.6 dSQ batch submission

With the help of Job Array dSQ, you can quickly batch submit a group of jobs that use

resources and execute tasks that are very similar, but with different parameters . The

following are the instructions for using the Job Array dSQ :

Write a calculation task list file

Create a new file joblist.txt, and then enter the tasks to be calculated in the file, each line

corresponds to a calculation task, such as:

gatk GenomicsDBImport -- genomicsdb -workspace- path ./AKCR1;

gatk GenomicsDBImport -- genomicsdb -workspace- path ./AKCR2;

gatk GenomicsDBImport -- genomicsdb -workspace- path ./AKCR3;

Generate Slurm Job Submission Script Using dSQ

First execute module load dSQ to load the installed dSQ of the platform to the current

terminal window, and then execute the following command to generate the Slurm job

submission script

dsq --job -file joblist.txt -p q_cn -n 1 --mem-per- cpu 40g

joblist.txt is the task list file written in the previous step; -p q_cn indicates that the job is

submitted to the q_cn queue; -n 1 indicates the core used by each computing task; --mem-

per- cpu 40g indicates that each computing task uses 40g Memory

After the command is executed successfully, a `dsq-joblist-yyyy-mm-dd.sh` file will be

generated in the current directory, and ` yyyy -mm -dd` is the creation date.

dsq-joblist-2019-08-01.sh:

#!/ bin/bash

#SBATCH --array 0-9999

#SBATCH --output dsq -joblist - %A_%4a-% N.out

#SBATCH --job-name dsq-joblist

#SBATCH -p q_cn -n 1 --mem-per- cpu 40g

DO NOT EDIT LINE BELOW

computing center

18

/usr/nzx-cluster/apps/dSQ/dSQBatch.py /GPFS/ zhangli /DATA/ vcf.call.dsq /joblist.txt

/GPFS/ zhangli /DATA/ vcf.call.dsq

submit homework

Execute the following command to submit the job

sbatch dsq-joblist-yyyy-mm-dd.sh

computing jobs) are in the joblist `joblist.txt` file and how many jobs will be submitted.

Job management

When a job ends, there will be a job_jobid_status.tsv file in the current directory,

which records the following information about each job :

Job_ID : Job ID

Exit_Code : program exit code

Hostname: occupies the node name

Time_Started : start time

Time_Ended : end time

Time_Elapsed : total time elapsed

Job: run command

In addition, you can check and kill jobs through slurm 's squeue and scancel commands.

homework check

Run the following command:

dsqa jobsfile.txt job_2629186_status.tsv > failedjobs.txt 2> report.txt

using dSQ , execute module load dSQ to load the software into the current terminal

environment

Failedjobs.txt and report.txt files will be generated, which will record the number of jobs that

run successfully and fail, and which jobs fail to run.

4.7 local / tmp directory use

computing center

19

tmp of the computing node , the total disk space is 160G. If the temporary file

generated is too large and the disk space of the tmp directory is full, it will affect the normal

operation of the program. In order not to affect the user's work progress and operation

results, the following should be noted A few points :

• Before running, you can evaluate how many temporary files the running program can

generate. If it exceeds the local space, you can directly specify the tmp output path to

the DATA directory under your home directory .

• When running, you can observe whether there is any error message in the output of

the program .

• You can ssh to the requested node and see the space allowance under / tmp .

• administrator finds that the / tmp space is insufficient, the corresponding user will also

be notified, specify the tmp output path, and re-run the program.

4.8 Job management

sinfo

The idle state of each partition node can be queried through sinfo ; the idle

state of all partition nodes in the cluster is displayed , idel is idle, mix is part of the

core of the node that can be used, and alloc is occupied; (available queues q _cn ,

q_ai , q_ai48, q_fat , among which q_cn _lyz, q_ai1024g_lyz, lab_fat_c, lab_fat_l , bioin

fo_ai, bioinfo_fat are exclusive queues of other laboratories) The queue status will

be adjusted continuously, and the specific update information can be paid to the

computing center website: h ttp :// h pc.cibr.ac.cn

Common parameters of sin fo

-a, --all # show all partitions ((including hidden and those inaccessible)

-d, --dead #View unresponsive nodes in the cluster

-l, --long #long output -- show more information

http://hpc.cibr.ac.cn/

computing center

20

-n, --nodes=NODES # Display information about the specified node, separated by

commas if multiple nodes are specified

-o, --format=format #Output in the specified format

-p, --partition=PARTITION #Display the information of the specified partition, if multiple

partitions are specified, separate them with commas;

Help options:

--help # Display the help information of the sinfo command;

job / squeue

View the queuing of submitted jobs;

job #View the job information submitted by yourself

squeue #View job information submitted by all users

By default, the output contents of j ob and squeue are as follows: job number,

partition, job name, user, job status, running time, number of nodes, number of

CPUs requested, number of memory requested , and running nodes

JOBID PARTITION NAME USER ST TIME NODES CPUS MIN_M NODELIST

By default, the output of squeue is as follows, namely job number, partition, job

name, user, job status, running time, number of nodes, running node

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

Common parameters of squeue

--help # Display the help information of the squeue command;

-A < account_list > # Display the jobs of all users under the specified account, separated

by commas if there are multiple accounts;

- i <seconds> # Refresh the output job information every corresponding number of

seconds

-j < job_id_list > #Display the job information of the specified job number, if there are

multiple job numbers, separate them with commas;

-n < name_list > #Display job information on the specified node, separated by commas

if multiple nodes are specified;

-t < state_list > #Display the job information of the specified state, if multiple states are

specified, separate them with commas;

-u < user_list > #Display the job information of the specified user, if there are multiple

users, separate them with commas;

-w < hostlist > #Display jobs running on the specified node, separated by commas if

there are multiple nodes;

-l, --long # output long report

computing center

21

Display job /node information through sacct and scontrol show job / node ;

Use sacct to query information about jobs that have ended, as follows:

sacct -j 899775

Output job information in a specified format;

sacct --format= jobid,user ,alloccpu,allocgres,state%15,exit -S 2022-08-01

Note: Detailed parameters can be viewed through sacct –help

jobid resource of the running job through scontrol show job :

show node via scontrol View the application resources of the occupied node :

scancel

computing center

22

Cancel submitted jobs in the queue;

scancel jobid

scancel common parameters;

--help # Display the help information of scancel command;

-n < job_name > # Cancel the job of the specified job name;

-p < partition_name > # Cancel the job of the specified partition;

-t < job_state_name > # Cancel the job of the specified state, "PENDING", "RUNNING" or

"SUSPENDED";

-u < user_name > # Cancel the job under the specified user;

Chapter 5 View storage space

View group usage mmlsquota –g gongrong_lab (default DATA 2T+scratch60 10T)

View DATA directory usage mmlsquota –j gongrong_lab_permanent gpfs

View scratch60 directory usage mmlsquota –j gongrong_lab_temp gpfs

Note: If you need more storage space, you need to fill in the storage expansion application

form

Chapter 6 User Support

1 . You can ask questions directly in the forum

2. You can also send emails directly to the specified email address, which can be

synchronized to the forum. The email address is cibrhpc@mail.cibr.ac.cn

3. Forum website: http://bbs.cibr.ac.cn /

4. E- mail of Computing Center : hpc@cibr.ac.cn or wangyanmin@cibr.ac.cn

5. Wang Yanmin Tel: 13505420370 (Wechat synchronization)

mailto:也可以直接发送邮件到指定邮箱可以同步到论坛里邮箱为cibrhpc@mail.cibr.ac.cn
mailto:也可以直接发送邮件到指定邮箱可以同步到论坛里邮箱为cibrhpc@mail.cibr.ac.cn
mailto:也可以直接发送邮件到指定邮箱可以同步到论坛里邮箱为cibrhpc@mail.cibr.ac.cn
http://bbs.cibr.ac.cn/
http://bbs.cibr.ac.cn/

computing center

23

Remarks: The user manual will be updated from time to time, the latest version can be

downloaded from the website of the Computing Center h ttp://hpc.cibr.ac.cn

If you have any questions or needs, you must contact the

computing center

http://hpc.cibr.ac.cn/
http://hpc.cibr.ac.cn/

